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Abstract

This paper concerns several related classes of mappings from rRY
into itself which represent nonlinear generalizations of certain types
of matrices, including the diagonally dominant and the monotonic matrices,
as well as the M-, P-, and S-matrices and their weaker forms. Analogous
to the linear case, these nonlinear mappings occur frequently as discrete
analogs of boundary value problems and in network flow problems.

The different function classes have been introduced and analyzed
in recent work by J. Moré and W. Rheinboldt. This article begins with
a survey of that work which covers, in particular, the basic definitions
of these mappings, their principal properties, as well as their inter-
relations. Then several results are proved concerning surjectivity pro-
perties of some of the functions, thereby generalizing in part various
older results. The relation between nonlinear mappings and equilibrium
problems for network flows is discussed, and it is shown how some of the
properties of the functions under consideration lead to statements about
Dirichlet-type problems for network flows and about a general maximum
principle. Finally, a class of implicit iterative processes is intro-
duced which represents a generalization of the family of linear methods
obtained from regular splittings. For these processes both a monotonic
and a global convergence theorem are proved. As an application, this
ensures the global convergence of the (underrelaxed) block-Jacobi and
block-Gauss-Seidel methods for continuous, surjective M-functions,
which, in turn, generalizes a corresponding theorem of Rheinboldt for

the point processes.
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Generalizing Several Types of Matrices
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1. Introduction

Consider a nonlinear mapping F:D ¢ RY > R” and the system of equations
Fx = z. Many of the well-known convergence results about iterative pro-
cesses for solving this system place only very general analytic conditions
upon F, such as differentiability, Lipschitz-continuity, etc. This pro-
vides, of course, for rather broad theorems which are often generalizable
to infinite—dimensional spaces. But at the same time, when applied to
particular mappings on Rn, such as, for example, discrete analogs of
elliptic boundary value problems, or nonlinear network flow functions,
these general convergence results tend to give only relatively limited or
localized information.

The situation is analogous to the one in which only a norm condition
ﬂB" < 1 is used to ensure the convergence of an iterative process
xk+l = Bxk + 2z, k=0,1,..., for solving the linear system Ax = z. It
is well-known that stronger convergence results here require a much deeper
knowledge of the spectral properties of the iteration matrix B and hence

of the structural properties of A itself. Similarly, it appears to be

beyond question that also in the nonlinear case stronger convergence
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theorems will have to be based, in general, on more specific assumptions
about the inherent finite-dimensional structure of the mapping F, as,
for instance, the specific dependence of the components f£. of F on the
individual variables X, . This in turn leads to the need for defining and
analyzing appropriate classes of n—dimensioﬁal nonlinear mappings as they
occur in various applications. So far only a few structurally different
classes of such mappings have been considered, and a need for more work
along this line certainly exists.

This article presents a survey-—and some new results—--on recent work
about a group of related classes of n-dimensional functions. Following
an unpublished suggestion of Ortega, Rheinboldt [1969b] investigated the
so-called M-functions on R" which represent a nonlinear generalization
of the well-known M—mqtrices. In particular, it was shown that the
discrete analogs of mildly nonlinear elliptic problems considered by
Bers [1953], Greenspan and Parter [1965], Ortega and Rheinboldt [1967],
[1970a] and others, as well as the network flow functions analyzed by
Birkhoff and Kellogg [1966] and Porsching [1969], are specific cases of
M-functions. Moreover, the global convergence of the (underrelaxed)
nonlinear (point-) Jacobi-, and (point-) Gauss-Seidel processes was
established for continuous, surjective M-functions, thereby generalizing the
corresponding well-~-known results for M-matrices (see, e.g., Varga [1962]).

The latter result is typical for many surprising similarities between
the behavior of M~functions and M-matrices, and in turn these similarities

suggest the idea of looking for analogous nonlinear extensions of other



types of matrices as well. In this connection, the P- and S-matrices

and their weaker forms, the PO- and‘So—matrices considered by Fiedler and
Ptak [1962], [1966] are of some interest, especially since every M-matrix

is also a P-, as well as an S-matrix. Recently, Moré and Rheinboldt [1970]
introduced and studied such nonlinear n-dimensional generalizations of these
four types of matrices--accordingly named PO, P, SO, and S-functions. As
expected, M-functions are special cases of P-functions and the continuous
P-functions are S~functions. It also turned out that earlier results of
Gale and Nikaido [1965] and Karamardian [1968] have a natural place in this
theory, and that certain mappings, considered by Willson [1968] and Sandberg
and Willson [1969a/b] in connection with particular electronic circuit
problems, are included among these new functions.

In Section 2 we present the basic definitions of the mentioned function-
classes and of several related types of mappings. This is followed in Sec-
tion 3 by a survey of the major properties of these functions and of their
interrelations. For clarity the results are not always stated in their most
general form, and for further details about the material in the first two
sections, as well as for many of the proofs, reference is made to Rheinboldt
[1969b] , Moré and Rheinboldt [1970], and Moré [1970]. Section 4 concerns
the problem of determining the surjectivity of cexrtain of the mappings under
consideration and presents some new generalizations of earlier results onx
M-functions. In Section 5 connections between n-dimensional nonlinear
mappings and network flow problems are discussed, and, finally Section 6
concerns a general type of iterative process similar to the processes ob-
tained by regular splittings in the linedr case. In particular, a global

convergence theorem is proved which covers as a special case the convergence



of the block-Jacobi-, and block-Gauss-Seidel process for continuous sur-
jective M-functions.

At this point, I would like to extend my special thanks to Jorge Moré
for his helpful cooperation in preparing this article and to the Gesellschaft
fir Mathematik und Datenverarbeitung, m.b.H., Birlinghoven/Germany, where,

in 1969, I began work on several of the new results reported here.

2. Basic Definitions

Throughout this paper, x < y denotes the natural (component-wise)
partial ordering on the n-dimensional real linear space R’ of column
vectors, and x < y stands for X, <Yy ienN=1{1,2,...,n}. The correspond-
ing notation is used on the space L(Rn) of real n x n matrices.

We begin by recalling the following standard terminology:

. : : , n .. .
Definition 2.1. (a) A mapping F:D<C R - Rn is isotone (or antitone) on

D if x ¢y, %X,y € D, implies that Fx £ Fy (or Fx > Fy), and strictly

isotone (or strictly antitone) if, in addition, it follows from x < y, X,y € D,

that also Fx < Fy (or Fx > Fy).

. n., . . ,
(b) The function F:D C rR® ~ R is inverse isotone on D if

Fx ¢ Py, x,vy ¢ D, implies that x < y.

Note the self-evident fact that an affine mapping Fx = Ax + b is isotqne
exactly if A > 0 and inverse isotone if and only if A is nonsingular and
2t s o,

There is a close connection between nonlinear network flows and several

of the function classes to be discussed here. In fact, many of the results



about these functions have inherent network-theoretical aspects and appear
to be intuitively clearer if a network terminology is used to state them.
Following Rheinboldt [1969b]--and in analogy with the connection between
graphs and their incidence matrices—-a particular network is associated with

. n
any function on R .

Definition 2.2. Consider F:D CZRp - R? with the components fl”"’fn'

(a) For any fixed x & R" the n2 functions

v,.: {t e Rl x+te’

1 _ N
i3 e D} + R, wij(t) = fi(x+te Yy, i, e N

are the link-functions of F at x. Here eJ are the usual unit

. . n
basis vectors in R .

(b) The associated network QF = {N,AF} of F consists of the set of nodes

N = {1,...,n} and.the set of links
AF = {(i,j) e N X N I i#3, wij not constant for some x € R}.
A link (i,3) € AF is permanent if wij is not constant for any x € R".

This notation can be interpreted as follows: The variables x X

1" n
are state variables associated with the n nodes of QF, and the wvalue
fi(xl,...,xn) is the (total) efflux from node i at state x. The nodes !
i and j of N are connected by a link, if there is at least one state
x at which the link function wij is not constant; we might say that at

state x the link (i,j) € AF is conducting. A permanent link is then

conducting at any state x.



We shall now place various conditions upon the behavior of the link
functions, and in all cases these conditions will be assumed permanent, that

is, they are to hold independently of the particular state.

Definition 2.3. A mapping F:D < ’R" > R® is off-diagonally antitone if

for any state x € R" the "off-diagonal" link functions wij’ i# 7,

i,j € N, are antitone. Similarly, F is diagonally (strictly) isotone

if for any x € R the "diagonal" link functions wll,...,wnn are (strictly)
isotone.

Off-diagonal antitonicity states that for any linked nodes i,j € N
a change of the state Xj of the receiving node produces a change with the
ppposite sign in the efflux fi from the originating node i. This is,
of course, the expected situation in a linear potential network where the
flow from i to j %s proportional to the potential difference X, - xj.
The matrix A = (aij) describing such a linear network flow then satisfies
aij £ 0, 1 # j, which is one of the properties of an M-matrix. Since the
other property, A_l %2 0, is equivalent with inverse isotonicity, we are led

to the following nonlinear generalization of M-matrices.

Definition 2.4. An inverse isotone and off-diagonally antitone mapping

F:D < R® + R® is an M~function.

It is now hardly surprising that an affine mapping FX = &x + b is anh
M-function if and only if A € L(Rn) is an M-matrix.

Ky Fan [1958] has shown that all principal minor determinants of an
M-matrix are necessarily positive. The same result, of course, holds

for all symmetric, positive definite matrices. More generally, Fiedler
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and Ptak [1962] considered the class of all matrices in L(Rn) with this
property and called them P-matrices.

A different generalization of the M-matrices can be obtained from the
following characterization result of gy Fan [1958]: A matrix A € L(Rn)
with aij £ 0, i#3, i,J € N, is an M-matrix if and only if Au > 0 for
some u > 0. Following earlier work by Stiemke [1915], Fiedler and ptak
[1966] called any A ¢ L(Rn) an S—ma£rix if Au > O for some u > 0. 1In the
same article they also showed that any P-matrix is an S-matrix and proved
a number of results about these and related matrices.

Stimulated by these linear results, as well as by some nonlinear
results of Gale and Nikaido [1965], Karamardian [1968], and Sandberg and
Willson [1969a],Moré and Rheinboldt [1970] introduced the following non-

linear generalizations of the P- and S-matrices and of their weaker forms:

Definition 2.5. (&) A mapping F:D C R > ’" is a P:-function (or p~-function)

on D, if for any x,y € D, X # y, there exists a k € N such that
(x, -y, ) (£, x)-£, (¥)) 2 0, x # v, (0ox (x-y,) (£, x)-£ (y)) > 0).

(b) F:D C:Rp + R" is an §C-function (oxr S—function) on D,

if for any x € D there exists a y € D such that y 2 x, v # x, and Fy > Fx

(or Fy > Fx).

Again it is easily verified--using the results of Fiedler and Ptak [1962],
[1966]--that an affine mapping Fx = Ax + b belongs to one of these four
classes of functions if and only if A € L(Rn) is a member of the corresponding

class of matrices.



In network terminology, P-functions have the property that for any
{non-zero) change of the state there is at least one node at which the
change of the efflux has the same sign as the change of state. For many
applications this appears to be a rather natural condition.

If A ¢ L(Rn) is diagonally dominant and has a non—-negative diagonal,
then A is a P -matrix, since, if x # 0 and k e N such that ‘ka = axﬂm,

0

we have

\"

2
xk(Ax)k > xk(akk - Z Iakjl) 0, X # 0.

j#k
If A 1is even strictly diagonally dominant, it is a P-matrix. This suggests
the question whether the concept of diagonal dominance can also be extended
to nonlinear functions. Already a simple reflection shows that several
natural direct generalizations are not entirely satisfactory; this makes

the following ingeniocus definition of Moré [1970] rather interesting:

Definition 2.6. A mapping F:D < R+ R is strictly diagonally dominant,

if for any x,y € D, x # y, it follows from fk(x) = fk(y) that

eyl < eyl

Moré [1970] shows that, again, an affine mapping Fx = Ax + b is strictly
diagonally dominant if and only if A 1is a strictly diagonally dominant
matrix. He also introduces an extension of the concept which includes the
irreducibly diagonally dominant matrices. This generalization is based on

the existence of certain paths in the associated network.



3. Properties of the Different Functions

In line with the survey nature of this article we summarize now
without proof some of the major properties of the classes of functions
introduced in the previous section. For the sake of simplicity, these
results are not given in their most general form, and, in particular,
it is always assumed that F:Rn - Rn is defined on all of Rn, although

more restricted domains could also be admitted.

Theorem 3.1 - Relations between the Classes.

(a) Any P~ or S-function F:Rn +~ r" is also a Po— or So—function, respectively.

. n n , .
or P-function F:R™ > R is also an S, or S-function,

(b) Any continuous PO 0

respectively.

. . . n n , .
(c) Any isotone, or antitone mapping F:R = R is an S_ —function, and

0
strictness implie$s that F is an S-function.
(d) A continuous, inverse~isotone mapping F:R" > R is an S-function.
(e) If F:Rn -> Rn is a PO- or P-function, then F is diagonally isotone,
or strictly diagonally isotone, respectively.
(£) Any continuous, diagonally isotone, and strictly diagonally dominant
. n n ., i ,
mapping F:R~ *> R is a P-function.
(9) F:R" > R® is an M-function if and only if it is an off-diagonally
antitone P-function.
The implications (a), (c), and (e) are rather straightforward con-
sequences of the definitions; (b) represents a result of Karamardian [1968]

phrased in this terminology; (d) and (g) are proved by More and Rheinboldt

[1970], while (f) is a result of Moré [1970].



We indicate the general structure of these relations in the follow-

ing diagram:

—~—

/

/Diag. isotone,
( strictly diag.
\  dominant

\ S
/ \ Y
/ Strictly ‘Def. Diag. \
diag. isotone// isotone //
pP-function :>Eﬁ.<iPo—function
N

(g} QN

Off-diag. \
. antitone
v P-function

<

M-function ef ;nverse S-function s _-—function \\

isotone 0 /

(@) (a) //

/

?trictly Def. Isotone
isotone or or

antitone Antitone

S 499
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Note that, by definition, any isotone, or strictly isotone function
is diagonally isotone, or strictly diagonally isotone, respectively. This
relation is not shown. Note also that the diagram contains several derived
implications, such as, for example, that any M-function is strictly diagon-

ally isotone.

Theorem 3.2 - Inverses.

n ., ., . . . . s e .
(a) F:Rp > R is inverse isotone if and only if F is injective and

F-l:FRn - Rn is isotone.

1

(b) If F:Rn > Rn is a P-function, then F is injective and F :FRP > Rp

is again a P-function.

(c) If F:R® > Rn is an F-differentiable, injective P _~-function, then

0

F_l:FRn + R is again a Po—function.

The proofs of (a) and (b) are straightforward consequences of the
definitions. Part (c) is proved by Moré and Rheinboldt [1970]; it is
conjectured that the result remains valid if F is only continuous.

In the case of P P-, or M-matrices also any principal submatrix

o_l
“belongs to the same class. TIn order to consider the nonlinear analog of

this result, we formalize first the concept of a subfunction.

Definition 3.3. The subfunction of the mapping F:R" ~ R® coxrresponding

to the index set M = {il,...,im}<: N, 0O < m ¢ n, and the constants

cj, j ¢ M, is the mapping G:Rp > R with the components

m i, . n
gk(Y) = £, ( z Yje I+ Z CjeJ), k=1,...,m, y ¢ R,
k=1 3

j . . . n
where eJ are the unit basis vectors in R.
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We shall see in Section 5 that these subfunctions are of particular
interest in connection with Dirichlet boundary value problems for network
flows.

In generalization of the cited result for PO-, P-, and M-matrices we

have now:

. . n n
Theorem 3.4 - Subfunctions. ¥For any P.~, P-, or M-function F:R -+ R,

0

also any subfunction of F belongs to the same function class.

In the case of PO— and P-functions, the proof follows directly from
the definitions. For continuous, surjective M-functions, the result was
given by Rheinboldt [1969b]. 1Its generalization to arbitrary M~functions
is due to Moré and Rheinboldt [1970]; interestingly, the proof is based

on the corresponding result for P-functions together with the relation (g)

of Theorem 3.1 between the two function classes.

In the applications, characterization theorems for the functions of
the various classes are of considerable importance. For M-functions
Rheinboldt [196%9%] gave four related theorems of this type, none of which
required more than continuity. 1In order to illustrate the connection to
other results given later, we prove here some modification of one of these
theorems. As usual, a path from i to £ in @ is a sequence of links

F
of the form

Yo 1, =1, i =%, m> O.

(3.1) (igrip)s (ipady)seees (i /i 0

m+1

Theorem 3.5. Let F:R® » R® be off-diagonally antitone, and assume that

for any x € R” there exists a vector u = u(x) > O such that the mapping



pX.rt + &Y, PIt) = £, (xttulx)), 1 N,

is isotone. Suppose further that for any x € R" and i ¢ N there is a
path (3.1) to a node £ = %(i,x) € N such that pz is strictly isotone

and that at any state the link functions ¢, i r J =0,...,m, are
i+l
strictly antitone. Then F is an M-function.

Proof: Suppose that Fx ¢ Fy. Then, with u = uly),

400 > to = inf {t e Rl l tu 2 y—k} > 0.

and N. = {i e N | t u, = yi—xi} is not empty. If t

0 0 s 0, then x 5 vy,

0

hence suppose that t,. > 0. If i ¢ Ny then also jvg N, for any j # 1

0 0

such that wij is always strictly antitone. In fact, otherwise

v, + toui =X, and yj'+ tOuj > xj, and

fi (y+t0u) < fi (y1+t0u1 Peae ’yj-l+t0uj—l’xj 'yj+1+t0uj+l’ e ,yn+toun)

A

fi(x) < fi(y) < fi(y+tou)

provides a contradiction. Hence, there exists a node i ¢ N0 such that

Pi is strictly isotone. But then

£, lyrtqu) = £,y +eguy re e ryy g FEGUy g o X oY gy s Y PG )

S fi(x) < fi(y) < fi(y+t0u>

is again a contradiction. Altogether, therefore, t. > 0 is impossible and

0

the result is proved.
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Note that when P~ is strictly isotone for any x, then F is
already an M~function since we can take £ = &(i,x) = i. This generalizes
the sufficiency portion of the earlier cited characterization of M-matrices
by Ky Fan, namely, that A is an M-matrix if and only if aij < 0, 1 # 3,
and Au > O for some u > 0. The necessity part is trivial, since we can
take u = A_le > 0, with e = (l,l,...,l)T. It might be conjectured that
similarly for M-functions the conditions of Theorem 3.5 are also necessary.

This is not the case as the fdllowing example shows:

(arctan x.) ~ x
F:R2 - R2, Fx = 1 2 .

arctan x2

It is readily verified that F is an M-function, but for no u > 0 is
F(tu) an isotone function of t for all t ¢ Rl.

The above characterization result for M-functions does not even
require F to be continuous. If F is assumed to be differentiable,

simpler characterizations can be obtained in terms of properties of the

derivative.

Theorem 3.6. Let F:RF > RF be F~-differentiable on all of Rn.
(a) F is a Po—function if and only if, for any x € Rp, F'(x) is a

Po—matrix.
(b) If, for any x ¢ Rn, F'(x) is a P-matrix, then F is a P-function.
(¢) If, for any x € Rp, F'(x)»is an M-matrix, then F is an M-function.
(d) If F is an M-function, then F'(x) is an M-matrix whenever it is
nonsingular.

(e) 1f, for any x € Rp, F'(x) is a strictly diagonally dominant matrix,

then F is a strictly diagonally dominant mapping.
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Parts (a) and (d) are given by Moré and Rheinboldt [1970], and (e)
is due to Moxé [1970]. It may be noted that in some of these implications
F-differentiability may be reduced to G-differentiability. Parts (b) and
(c) represent results of Gale and Nikaido [1965] phrased in our terminology.
It may be noted that (c) follows from (b) and Theorem 3.1(g). 1In fact,
since ajfi(x) £ 0 for i # j and any x ¢ Rp, the mean value theorem applied
to wij ensures that F is off-diagonally antitone.

As a typical application of Theorem 3.6, consider the two-point

boundary value problem
(3.2) u" = ¢(t,u,u'), 0 < £t <1, u(0) = o, u(l) = B

where ¢ 1is F-differentiable on S = {t,u,p)T € R3 I O0<tgl, upe Rl},

and
2,0(t,u,p) 2 0, oot sy, Yieum® es.
A simple discrete analog of (3.2) has the form
F:R® > R®, Fx = Ax + h%x + b

where h = (n+l)—l, tj = jh, J = 0,1,...,n+l1,

A= . . * ; b= (—"Olrol'--rol'-B)Tl
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1

and :R° ~ R" has the components ¢i(ti,xi,(2h)_ {x )Y, i=1,...,n,

. amX,
i+l “i-1

with x_ = a,

0 = B8, For h< 2/y it is readily verified that

xn+l
F'(x) = A + h2®'(x) is always an M-matrix. In fact, F'(x) is tridiagonal
with positive diagonal and strictly negative first subdiagonals, and we
have irreducible diagonal dominance. (See, e.g., Varga [1962].) Thus,
F is an M-function. It turns out that F 1is also surjective; this can be
shown in various ways; a simple proof follows from Theorem 4.7.

Since a linear mapping A:R" > R is inverse isotone if and only if
A_1 > 0, Theorem 3.6 suggests the conjecture that when F:R™ » rR® has, for
any x € Rn, a nonsingular F-derivative for which F'(x)"1 > 0, then F
is inverse isotone. So far, this still represents an open problem, but

there are several partial answers. We conclude this section with one of

these; a second one is contained in the next section.

Theorem 3.7. Let F:Rp-+ RY be convex and G-differentiable on R. Then
F is inverse isotone if and only if, for any x ¢ Rn, F'(x) is nonsingular

and '.E"(x)—l > 0.

The proof is given by Moré [1970].

4. surjectivity

In this section we turn to the question when certain of the functions
considered so far are surjective, that is, when the corresponding equation
Fx = z is solvable for any z € R”. The basic tool for our discussion will
be the following "norm-coerciveness" theorem which appears to be due to
Cacciopoli [1932] and which is also a special case of a more general

result of Rheinboldt [1969a].
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Theorem 4.1. Let F:R® - R° be a local homeomorphism. Then F is bijective
if and only if F is norm~coercive in the sense that
(4.1) lim [Fx| = +=.

x>

In addition, we shall frequently use the well-known domain invariance
theorem which ensures that a continuous, injective mapping F:R" > R” has an

n . . n n
open range FR and is a homeomorphism from R onto FR .

As a direct application of Theorem 4.1, we prove the following general-
ization of a result of Sandberg and Willson [196%a]. Following Ortega and
Rheinboldt [1970b], a mapping @:Rn -~ g% is diagonal if the ith component
¢i of & is a function of only the ith variable X, O, in other words,

if the link-set A® of the associated network of ¢ is empty.

Theorem 4.2. Let F:R" - R™ be a continuous P.-function such that, indepen-

0

dent of x, the off-diagonal link-functions are Lipschitz continuous; that is
(4.2) Ifi(x+sej)—fi(x+te3)| < Yij|s—t|, s,t € Rl, x € R, i # j.

Then f = F + ¢ is a surjective P-function for any diagonal, strictly isotone,

. , . n n .
and surjective mapping 9:R -+ R, ¢i' i=1,...,n.

Proof: From the definitions it follows readily that F is a P-function and,
hence, injective. Moréover, each component of ¢ 1s necessarily continuoas
on Rl and thus also F is continuous. In order to apply Theorem 4.1, it
remains to show only that f is norm-coercive. For this we proceed by

induction with respect to the dimension n.

\
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For n=1, F is isotone and the statement is trivial. Assume there-
fore that the theorem is valid for dimension n - 1, and that {xk} c rR® is

any sequence such that {#xX} is bounded. By the definition of P -functions,

0
there exists for any k 2 0 an index ik e N such that
x5 (£, )£, (00) 30, x; #0,
' 'k K k
-and hence that
k ,» k, A k k k k
(4.3) x; (£, (x)-f, (0)) = X, (fi (x )—fi (0)) + X, (¢i (xi )=¢. (0))
k 7k k k "k k k "k "k k
k k
2 X (¢, (xi )-¢i (0)).
k "k "k k
k . ok
We can select a subsequence of {x } -- again denoted by {x } -- such that
i is constant, and, for ease of notation, that i, = n for all k > 0. Then

k k

(4.3) assumes the form
k k k & k
< -
Xn¢n(xn) g xn(fn(x ) fn(O)).
. Dk Ak .
Since {Fx"} is bounded, and, say, lfn(x )—fn(O)l € ¢, k20, it follows

k k k -1 . k
: < <
for X 3 0 that ¢n(91 b ¢n(xn) < cor O g X € ¢n (¢), while for X < 0 we

s~

2 ¢—1(—c). Altogether, therefore,

obtain ¢n(0) > ¢n(xt) % —c¢, and thus 0 > x n

{xi} is bounded.

. . A n-1 n-1 a .
Now consider the subfunction G:R + R of P with the components

~ _ A _
gi(xll"'lxn_l) = fi(xll---rx /0) = fi(xllo--rxn_llo) + ¢i(xi)l

n-1

i=1,...,n"1.

~
By Theorem 3.4, G satisfies again the conditions of the theorem, and it
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follows from the boundedness ofk{xi} and'{ka} that

k

n—l'o)l

lai(xi,...,x
Ak k k k k
< |5, ]+ g Gepaee i 1000 -E, (x)se e )]
< Igi(xk)l + yinlxil < constant, i = 1,...,n, k > O.

Therefore, by induction hypothesis, {xz}, i=1,...,n-1, must be bounded
sequences, and this implies that Ff is indeed norm-coercive.

Note that the condition (4.2) certainly holds if F itself is uni-
formly Lipschitz-continuous. Thus the theorem applies, in particular, to
the case F = A + $, where A is a Po—matrix. This represents exactly
the mentioned result of Sandberg and Willson [1969a]. At the same time,
the one-dimensional example Fx = e® + x shows that (4.2) does not require
F to be uniformly Lipschitzian.

In the case of inverse isotone, or M-functions, the rather stringent
norm-coercivity assumption (4.1) can be replaced by the following condition

of order-coercivity:

1lim “xkl = 4o
(4.4) lim "ka" = +o whenever ke

koo and either xk < x
for all k 2 0.

For M-functions this was proved by Rheinboldt [1969b]. For the proof of the
corresponding more general result on inverse isotone mappings the next

simple observation will be useful:
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\ . . . n b . ,
Lemma 4.3. A continuous, inverse isotone mapping F:R = R is surjective
if and only if

(4.5) {yeR | y=2z+tv, =< t < +o} ¢ FR"
n
for some v > 0 and z € R .

Proof: The necessity of the condition is trivial. For the proof of the

sufficiency, observe first that F is a homeomorphism between R and
n n n . . .

FR and hence, by Theorem 4.1, that FR™ = R if F is norm-coercive.

Let {xk} c R® be any sequence such that {ka} is bounded. Then, because

of v > 0, we can choose constants o,B8 such that av < ka - z £ Bv for

all k¥ > 0, and hence, by (4.5), that

Fa = z + av g ka £ z+ Bv="Fb, k=20,1,...

for certain a,b € Rn.' Therefore, it follows from the inverse isotonicity
of F that a < xk < b for all k, which means that F is indeed norm-

coercive.

The mentioned order-coercivity result has now the form:

. . . . n n . . .
Theorem 4.4. A continuous, inverse isotone mapping F:R > R 1is surjective

if and only if it is order-coercive; that is, if and only if (4.4) holds.

‘Proof: If F 1is surjective, then Theorem 4.1 ensures that F is norm-
coercive and hence order-coercive.

Conversely, let F be ofder—coercive and, with any fixed z = Fxo e FR*
and o > 0, set gl(t)i [0,1] » R", q(t) = z + tde, O € t < 1, where

e = (l,l,...,l)T. Since F is a homeomorphism between R and FRn,

we then have
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n
£ = sup {t ¢ [0,1] | z + soe € FR , s ¢ [0,t]} > O,
and p(t) = F—lq(t) is well-defined for t ¢ [0,%]. Suppose that £ <1 ana
1 ~ \ ~
let {tk} ¢ R be such that 0 g tk < tk+1 <t,k=0,1,..., and 1lim tk = t.

k>0

Then z < q(tk) < gl(t ) £ z + foe, k = 0,1,..., and, by the inverse

k+1
isotonicity of F, p(tk) S P(tk+l)’ k=20,1,... . But then the order-coerci-
vity implies that {p(tk)} must be bounded, and, therefore, that iii p(tk) =%
exists. Now, by continuity, FQ = q(%) and, since FR® is open, T is
clearly not maximal against assumption. Thus, necessarily, % = 1 and,
because o > 0 was arbitrary, z + te ¢ FR® for all t > 0. Similarly it
follows that z + te ¢ FR® for all t ¢ 0 and now the result is a direct
consequence of Lemma 4.3.

At the end of the previous section we mentioned the conjecture that
when F:Rp - Rn is F-differentiable and'F'(x)_l > 0 for any x ¢ Rp, then
F is inverse isotone. A partial answer to this question was given by
Theorem 3.7. In the case of surjective mappings another partial result

can be obtained with the help of a proof technigque similar to that of the

previous theorem.

Theorem 4.5. Suppose that F:R" + R is continuously F-differentiable and
that, for any x ¢ Rn, F'(x) is nonsingular and satisfies F‘(xl—l > 0.

Then F is inverse isotone and surjective if and only if it is order-

coercive.

Proof: The necessity part was proved in Theorem 4.4. Suppose therefore
that F is order-coercive. By the inverse-function theorem F is a local
homeomorphism. More specifically, for any xo e R© there exist open neigh-

borhoods U of xo and V of Fxo such that the restriction FU of F




- 22 -

to U is a homeomorphism from U onto V and that the inverse G = F&l:V > U

X . . -1
is again continuously F-differentiable with G' (y) = F'(Gy) %2 0 for any v € V.
But then, for any v £ z, v,2 € V, it follows from

1

Gz - Gy = f G' (y+t(z-y)) (z-y)dt 2 O
0

that G is isotone on V, and hence, by Theorem 3.2, that FU is inverse

isotone on U. In other words, for any xO ¢ R” there exists an open neigh-
borhood U of xO in which F is inverse isotone.
0] 0 ' n
et nowy =Fx , u 2 0, u # 0, be any vectors, and set q:[0,1] »~ R,
g(t) = yO + tu, 0 £ t € 1. By the local homeomorphism property, there is a

tl > 0 and a continuous function p:[O,tll > Rl such that p(0) = xo, and

Fp(t) = g(t), t ¢ [0,t1]. If tl < 1, we can repeat this argument and continue

p beyond t to some £, > t etc. This continuation process ensures the

1 2 1’

existence of a continuous p:[O,%) > Rl such that p(0) = xo, and Fp(t) = g(t)
for t € [O,%). Let % € (0,1] be the maximal value up to which p can be
extended. For any r,s € [0,@), r < s, the set p(lr,s]) is compact and hence
can be covered by finitely many open sets Ul,...,Um in each of which F is
inverse isotone. More specifically, we can select points

= < < < = < <
r=r r «e. <r_ ., =s, such that {p(t) | r, £t ri+1} c U,

i l,...,m. Then q(ri+ > q(ri) and the inverse isotonicity of F in

1)

each Ui imply that p(ri‘+ ) = p(ri), i=1,...,m, and hence that

1

m
”~
[ (plr; ,)-p(r,)) 20, 0 r<sc<t,

i=1

(4.6) pl(s) - p(xr)

A 1 "
<
Suppose now that t < 1 and let {tk} C R be such that 0 < £ <t . <%,

k =0,1,..., and 1im t, = . By (4.6) we have plt) € plt ), k=0,1,...,

ok k+1
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and hence yo < q(tk) € yo + %u, k > 0, together with the order-coercivity,
implies that {p(tk)} is bounded and, therefore, that iiz p(tk) = Q exists.
Because of the continuity of F, we now have FX = g(t) and the openness of
FR® contradicts the maximality of %.

With this we have shown that yO + u € FRn for any yO € FRP and
u > 0, u# 0. By the same argument it follows that also yo - v ¢ FR®
whenever yo € FR” and v > 0, v # 0. Since any point y ¢ R" can be written
in the form y = yo + u - v, where yo e FR® and u > 0, v 2 0, we see that
Y € FR" and hence that FR® = R". Therefore, by Theorem 4.1, F is bijective
and hence a homeomorphism from R" onto itself. Thus, if Fy > Fx, then
either y = x or u = Fy - Fx 2 0, u ¥ 0. With p(t) = F—l(x+tu), 0stg1l,
the argument leading to (4.6) shows that y = p(l) = p(0) = x, and, hence,
that F 1is inverse isotone.

For continuous M-functions F:Rn > Rn, Rheinboldt [1969b] has proved
two surjectivity results which are based on Theorem 4.3; in other words,
the assumptions placed upon F are sufficient to prove the order coercivity.
For later reference we quote here without proof one of these results, and

more specifically the one which represents a continuation of Theorem 3.5.

Theorem 4.6. Let F:R® - R° be continuous and off-diagonally antitone, and
suppose that for some continuous, strictly isotone, surjective functions
1 1, . n_.n .
hj:R ~R, j=1,...,n, the mapping P:R° - R~ with components piLt) =
fi(hl(xl+t),...,hn(xn+t)), i=1,...,n, is isotone for any fixed x ¢ rR%.
Assume further that for every node i of QF there is a path (3.1) to
some node ¢ such that, for any x ¢ Rn, the link functions V¥, . ’
T3+l
i =0,...,m, as well as the component p, are strictly isotone and surjective.

Then F is a surjective M-function.
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As a simple application to differentiable mappings, we present the

following corollary:

Theorem 4.7. Let F:R" + R be off~diagonally antitone and F-differentiable,
and suppose that F'(x)u 2 v 2 0 for all x ¢ R® and some fixed u > 0, v = O.
Assume further that for any node i of QF there is a path (3.1) to some

node & such that v2 > 0 and

(4.7) 3. f, (x) £ a. <0, jJj=0,...4m,
lj+l lj ‘ 3

with constant ao,...,am. Then F is a surjective M-function.

with hj(t) = t/uj, j=1,...,n, this theorem reduces immediately to the
previous one.

As mentioned earlier, Theorem 3.7 provides an easy means of verifying
that the discrete analog of (3.2)--as considered in Section 3--is a surjective
M—~function.

Clearly, there are various other corollaries of Theorem 4.6 along the
lines of the previous result. Rather than to detail these possibilities, we
end this section with a somewhat different observation. The discussion in
this section was based on the norm-coerciveness theorem 4.1. As mentioned,
Rheinboldt [1969a] obtained this theorem as a special case of a more general
continuation theory; another special case of this theory is the well-known
Hadamard theorem which states that a continuously F-differentiable mapping
F:R" > R® is surjective if F'(x) is nonsingular and "F'(x)-lﬂ <€ Yy for all
x € R'. The rather simple and direct proof of the next theorem shows that
also the Hadamard theorem can be used to obtain surjectivity results of the

type considered here.
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Theorem 4.8. Let F:R°® -+ R be off-diagonally antitone and continuously
F-differentiable. Suppose further that for any x ¢ R® there is a vector
u{x) > 0 such that u(x) < v and F'(x)u(x) > v > 0 with fixed u > 0, v > 0.

Then F 1is a surjective M~function.

Proof: By the earlier-cited characterization result for M-matrices, F'(x)

is an M-matrix for any x € Rp, and hence Theorem 3.6 ensures that F is

an M-function. Moreover, F'(x)“l > 0 implies that 0 ¢ F'(x)—lv < u. Let
. -1

F(x) = (bij(x)), then

n
0 5 b, x)v, % jzlbij (x)vj sug, ik =1,..0,m,

and vk > 0 shows that

lec o™, < nlnax uy)/ tnin vy,

and, therefore, that the Hadamard theorem applies.

5. Boundary Value Problems

For a mapping F:R® > R© representing an equilibrium flow on a given
network, the following problem is basic: A state vector x is to be
determined which satisfies certain specified conditions at the boundary
nodes of the network and for which the efflux from all other nodes equals
a prescribed value. In line with Birkhoff and Kellogg [1966], we consider
here the case when the state at the boundary nodes is a given function of
the efflux from that node. The system of equations to be solved has then

the form
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5.1 X, - hi(fi(x)) = 2.4 ie Nb

fi(x) = z,,1 g Nb

where Nb < N is the set of boundary nodes. It is no restriction to assume

always that N, = {1,...,m}, 1 € m € n.

b

Any system of the form (5.1) is a (specific) boundary value problem
for F with respect to the boundary set Nb' We shall combine the given

. R 1 m .
functions hi into a mapping H:R - R with components h ,...,hm, and .

1
denote (5.1) by {H,z}iwhere Z € Rp. Correspondingly, x = sol'{H,z} deésignates
any solution of (5.1).

The simplest type of boundary value problem is obtained when H = O,
that is, when the boundary conditions reduce to xi = zi, ie Nb; this will

be called the Dirichlet boundary value problem. In this case, the system

(5.1) is equivalent with

(5.2) fi(zl,...,z /X

eeerX =z,, 1 =mtl,...,n
™ m+ll r n) ll I 4 I ’

and hence we are again led to consider the properties of the subfunctions of
F.

In many instances it is of interest to provide results for all boundary
value problems'{H,z} obtained by letting z € R® be any vector and H any func-
tion from a given class K of mappings. For abbreviation, we denote the
collection of all problems {H,z} of this type by B(F,N ,H), or B(H) for
short, if F and Nb are fixed. The two basic problems connected with

such a class B(J}) are, of course, as in the case of differential equations,

the existence and uniqueness of solutions for any {H,z} £ B(hH).
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In view of the above indicated connection between the Dirichlet pro-
blems and the subfunctions of the mapping F, the following result is a

direct consequence of Theorem 3.4:

Theorem 5.1. Let F:R -+ R be a P-, or M-function. Then the solution of
any Dirichlet boundary value problem {0,z}, z ¢ R® of F is unique provided
it exists.

For continuous, surjective M-functions F:Rp > Rp, Rheinboldt [1969b]
has shown that also any subfunction is again a surjective M-function.
Thus, in that case any Dirichlet problem of F always has a unique solu-
tion. The proof of this result was based on a characterization of surjective‘
M-functions in terms of the convergence of the Jacobi process. We give here
a simple, direct proof based on the order coercivity theorem 4.3 and on the

fact that the subfunctions of an M-function are again M-functions.

Theorem 5.2. Let F:R' -+ R” be a continuous surjective M-function. Then also

any subfunction of F 1is again a surjective M-function.

Proof: We prove the result for the subfunction

n-1 n-1 .
G:R > R ' gi(xl,...,xn_l) = fi(xl,...,xn_l,cn), i=l,...,n~1;

the general case then follows by repeated application of this result and by
appropriate permutations of the variables and components. Because of
Theorems 3.4 and 4.3 we need to show only that G is order-coercive. Let
k _ ..k k T n-1

goo= (xl,...,xn_l) € R be any monotonically increasing sequence such that

k
{ng} is bounded. If, say, b; » giﬁz i, £ =1,...,n=1, then
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k k .
bi b4 fi(xl,---,xn_lpcn) y 1L = l,...,n-l,

k=0,1,...,
k

0 k
> fn(xl, e e e ,Xn_l,Cn) !

0
b = fn(xl,...,xn_l,cn) >

n

and hence it follows, with v = F—l(bl,...,bn), that vi > xt, i=1,...,n-1,
k=0,1,... . Therefore, {ik} is bounded, and the same result can be obtained
if {ik} is monotonically decreasing. This shows that G 1is order coercive
and thus surjective.

It may be interesting to note that the subfunctions of surjective,
inverse isotone mappings need neither be inverse isotone nor surjective. 1In
fact, it is easily verified that

-X. + X

1 2
3 3 _
F:RW > R, Fx = xl x2 + x3
X - x3
1 3
is inverse isotone and surjective, while the subfunction Gl:Rl -> Rl,
gl(xl) = =X, is not inverse isotone and the subfunction
= + X,
2 2
G2:R <> R, G2x =
*1 T %

is not surjective,

In the case of elliptic partial differential equations, the validity
of a maximum principle is an iﬁportant tool in the study of the corresponding
boundary value problems. In line with Rheinboldt [1969b]--where a somewhat
different terminology was used--we define a maximum principle for network

boundqry value problems as follows:
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Definition 5.3. Consider a class B(F,N _,J) of boundary value problems

for a mapping F:R" > R" with respect to some set of boundary nodes Nbc: N.

The class B@Jd) admits the maximum principle if for any {Hl,zl}eB(}#), i=1,2,
with Hl(t) < Hz(t), t e Rl, and zl < 22, it follows that xl < x2 for any

x= = sol {Hl,zl}, i=1,2.

For continuous, off-diagonally antitone F and the class H=A
of all continuous, antitone H:R1 -+ Rm, Rheinboldt [1969b] proved a theorem
ensuring the validity of the maximum principle. This result was based on
the observation that B(F,N ,4) admits the maximum principle if and only

if, for any H e,a , the mapping

l,...,m

xi - hi(fi(x)), i

(5.3) PR > /Y, £ () =

fi(x) ; 1 =m+l,...,n,

is inverse isotone.
In the differentiable case there is a simpler version of this result
for which a proof can be obtained directly from Theorem 4.7. We denote

by A* the class of all F-differentiable, antitone mappings‘H:Rl+ R

Theorem 5.4. Let F:R® - R" be off-diagonally antitone and F-differentiable
and suppose that F'{(x)u > v > 0 for any x ¢ R® and fixed u > 0, v > 0.

Assume further that for any i £ Nb = {1,...,m} there exists a path (3.1)

from i to a boundary node % for which (4.7) holds. Then every boundary
value problem {H,z} e B(F,N_, A*) has a unique solution and the class B(.R*)

admits the maximum principle.
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To apply Theorem 4.7 we need to note only that for any H ¢ A * the
function FH of (5.3) is off-diagonally antitone and F-differentiable,

i
and that (FH)(x)u 2% 20 with Gi =u, > 0 for i ¢ N, and Gi = v, for

*

i # Nb'

6. Iterative Processes

This section is not intended to give a survey about the iterative
solution of the equation Fx = z when F belongs to any one of the function
classes discussed here. There are many relevant results in the literature,
and such a survey would, by necessity, be rather extensive (see, e.g.,

Ortega and Rheinboldt [1970bl). Even if we restrict ourselves to global
convergence theorems, the list of results still remains surprisingly lengthy.
For the Jacobi- or Gauss-—-Seidel processes it would include a well-known
theorem of Schechter [i962], which in our terminology concerns a special

type of P-function, new results of Moré [1970] for diagonally dominant
functions, and also the résult of Rheinboldt [1969b] for surjective M-
functions, cited in the introduction. In addition, we would have to mention
the global convergence theorem of Greenspan and Parter [1965] for the Newton-
one-step Gauss-Seidel process, which applies to a simple type of M-function,
and also the Newton-~convergence theorem of Baluev [1952] which, as we shall
see, assumes the inverse isotonicity of F.

Instead of going into fu;ther details about these and other related
results, we shall consider here a particular class of implicit iterative

processes of the form
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k+1 _k
X !X

(6'1) G( ) = Z, k = 0,1’...,

which represents a nonlinear generalization of the family of linear methods
obtained from regular splittings.

For the iterative solution of a linear system Ax = z, Varga [1962]
introduced a regular splitting of the matrix A as a decomposition A = B - C

in which B is nonsingular and B'-l > 0 as well as C 2 0. He then showed

73

. R . + - -
that for such splittings the iterative process xk 1 = B lek + B lz, k=20,1,...,

converges (for any xO € Rp) to the solution of Ax = z if A—l > 0. This covers,
in particular, the well-known result about the convergence of the Jacobi- and
the Gauss-Seidel process when A 1is an M-matrix.

The mentioned similarity between the behavior of the M-matrices and
M-functions suggests the idea of generalizing these regular splittings to

nonlinear mappings. In direct analogy to the linear definition we introduce

this generalization as follows:

Definition 6.1. A mapping G:D, X D c:,Rn x R* > R® is a regular iteration

0 0
function for F:I)c_RF -+ RP on the subset D0 of D if
(6.2a) G{x,x) = Fx, for any x € DO’

(6.2b) G(*,x):D. - R® is inverse isotone, for any fixed x € D

0 o’

(6.2c) G(y,-):DO > R® is antitone, for any fixed y ¢ DO'

Note that in the linear case this definition reduces exactly to that

of a regular splitting. Note also that in the nonlinear case it is evidently

necessary to add some assumption about the solvability of the eguation
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Gly,x) = z, for given X ¢ DO’ before we can hope to establish general con-
vergence results about the (implicit) iterative process (6.1).
In the remainder of this section we shall denote order intervals

in R by (u,v) = {x ¢ R l u € x £ v}, and we write xk + x*, k > =, as

+ . .
an abbreviation for xk < xk l, k=20,1,..., 1lim xk = x*, and, similarly,
k+oo
k + . .
xk v x*, k » », for x 3 xk 1, k=0,1,..., lim xk = x*, Moreover, we will
ko0

use the following well-known result of Kantorovich [1939]:

Lemma 6.2. Let H:(xo,yo> C R" > Rn be continuous and isotone, and assume
that x0 < on and yO > Hyo. Then the sequences xk+l = ka, yk+l = Hyk,

) . Lk k . 0 o
-k =0,1,..., satisfy x % x*, k > », and y ¢ y*, k + », where x < x* =. - -
CHx* < y* = Hy* ¢ yo.

The next theorem extends to processes of the form (6.1) a corresponding

monotone convergence result for Jacobi and Gauss—Seidel processes proved by

Rheinboldt [196€9Db].

Theorem 6.3. Given F:D c.Rn > Rn, suppose that for some z ¢ rR® there are
xo,yo e D such that x0 < yo, J = (xo,yo)»c D and Fx0 < 2 g Fyo. Let
G:J x J > R be a continuous, regular iﬁe;a&ion function for F on J
with the property that z ¢ G(J,;x) for any fixed x ¢ J. Then the sequences

13 k : 0 0
{y"} and {x"} specified by (6.1) and starting from y and x , respectively,

are well-defined and satisfy xk + x*, k » o, yk ¥ y*, k > o, where

X < X* g y* g yo and x*,y* are both solutions of Fx = z.

Proof: By assumption G({:,x) = z has a solution y ¢ J and, because of (6.2b),

!
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this solution is unique. Hence the mapping H:J - J satisfying G(Hx,x) = z
is well-defined and clearly continuous. Moreover, by (6.2c) it follows

from xO £ X<V € yo that
G(Hy,y) = z=G(HX,x) > G(HX,Y)

and hence, by (6.2b), that Hy = Hx. Therefore, H is isotone on J.
) ) 0 0 0 0 0, . .
Finally, again by (6.2b), G(x ,x ) = Fx < z = G{Hx ,x ) implies that

x0 < on, and, similarly, we obtain from G(yo,yo) = Eyo >z = G(Hyo,yo)

that yo > Hyo. The convergenée statement is now a direct consequence of
Lemma 6.2, and x* = Hx* and y* = Hy* are equivalent with Fx* = G(x*,x*) = 2

and Fy* = G(y*,y*) = z.

As a corollary we obtain the following global convergence result.

Theorem 6.4. Let F:Rp,+ R® be continuous, inverse isotone, and surjective.
Suppose, further, that G:R" x R% > R® is a regular iteration function for
F on R° with the property that G(-,x):Rp > R% is surjective for any

. n n s ss . 0 n
fixed x ¢ R'. Then, for any z € R and any initial point x ¢ R, the

process (6.1) converges to the unique solution x* ¢ R” of Fx = z.

Proof: Note first that (6.2b) and (6.2c) together with the surjectivity of
G(+,x) imply the existence of a continuous, isotone mapping H:R" + R for
which G(Hx,x) = z for all x ¢ R-. Moreover, for any xO € R" the sequence

{xk} c ’R® given by (6.1) is uniquely defined by xk+1 = ka, k=0,1,... .

Let a,b ¢ R® be the vectors with the components
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. 0 0 .
aj = min (fj(x ),zj), bj = max (fj(x ),zj), j=1l,...,n,

and set uO = F_la, v0 = F_lb. Then Fu0 £ 2 < Fv0 as well as FuO < x* g Fvo,

and it follows from the inverse isotonicity of F that u0 < X* g VO, as

well as uO < xO < vo. Consider now the sequences {uk}, {xk}, {vk} given by
. 0 0 . +
(6.1) and starting from uo, x , and v , respectively. Then uk 1 = Huk,
+ + k
xk 1 = ka, vk 1. Bv , k =0,1,..., and, because of the isotonicity of H,

0 0 . .
we obtain from uO £ x <€ v , by induction, that uk < xk < vk, k=20,1,... .

. kK -
Moreover, from Theorem 6.3 it follows that u 4+ u*, k > » and vk v V¥,
k > «© where u0 g u* g v¥* g VO and Fu* = 2, Fv*¥* = z. The injectivity of F

then implies that u* = v* = x* and hence necessarily that, lim xk = x*,

k>
This result covers as a special case the global convergence of the
Jacobi and the Gauss-Seidel process for continuous surjective M-functions
mentioned in the introduction. Instead of going into details of that case we

extend it immediately to the corresponding block processes.

. . n
Withn, +n, + ... +n_=n,n, 21, p21, consider R as the

1 2 o) 3
n, n, np n n,
product-space R~ X R~ x ,.. X R~ and let Pi:R ~R 7, i=1,...,p,s

denote the corresponding natural projections. Then any x € R? may be parti-
. . 1 & i .
tioned in the form x = (x,...,x) where x~ = Pix, i=1,...,p, and,
. n,
similarly, we define the block-~components FIiR" > R T of any mapping
F:R® > R by F'x = P,Fx, i =1,...,p.

For the solution of_the equation Fx = z, the block-Gauss—Seidel process,

with respect to the particular>partition, has now the form:
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, n,
. . i i
Determine a solution x € R of

1.k+1 i-1,.k+1 i
X" ’

) I"'I(x ) X (xi+1k

(6.3) rl(( Y M) = 2

and set (xl)k+l = xl, i=1,...,pr k=0,1,... .

Analogously, the block Jacobi process can be defined, and the form of
the relaxation-versions of both processes should be self-evident. For
reasons of space, we restrict ourselves here to (6.3), especially since
in the mentioned other cases the discussion remains essentially the same.

Observe now that with

n i, 1 i i+l )
(6.4) G:R" x R% » R ’ PiG(y,x) = F y ,c..,Y ,xl ,..,,xé), i=1,...,p,

the process (6.3) assumes the general form (6.1). For M-functions F, the
following result then ensures the applicability of Theorems 6.3 and 6.4

to the block Gauss-Seidel process (6.3).

Theorem 6.5. Let F:R > R" be an M-function; then the mapping G:R™ x rR" + rR"

defined by (6.4) is a regular iteration function for F on R". If, in
addition, F is continuous and surjective, then G(v,x):Rn + R" is surjec-

tive for any fixed x € r™.

Proof: The conditions (6.2a) and (6.2c) are evidently satisfied for G,

and hence, in order to complete the proof of the first statement, it remains
n n.,. . . ) n

to show only that G(-,x):R - R 1is inverse isotone for any x ¢ R . Let

G(lv,x) =2 G(u,x) for some x,u,V € rR%. By Theorem 3.4, the subfunction

1, .2 n, 1 ™M
Fo(e,x",...,X):R + R of F 1is again an M—-function, and, hence,



- 36 -

PlG(v,x) > PlG(u,x) implies that vl > ul. To proceed by induction, suppose

that vt > ul for i =1,...,k-1 and some k with 2 ¢ k ¢ n. Then the off-

diagonal antitonicity of F ensures that

k, 1 k- k k+1 n k, 1 k k+1
F(u,...,u l,v X reserX ) T F (W, .0,V X ,...,xn)
= PkG(v,x) > PkG(u,x) = Fk(ul,...,uk,xk+l,...,xn).
n n
Since Fk(u;,...,uk_l,',xk+l,...,xn):R k + R k is again an M-function, this

k
shows that also Vk > u , and hence altogether, that v 2 u.
For the proof of the second part, assume that F is a continuous,
surjective M-function. Then, by Theorem 5.2, also any subfunction of F

has the same properties. Hence, for given x,z ¢ Rn, the equation

1,1 2
PlG(y,x) =F (y ,x ,...,xn) = zl

. n
has a unique solution yl_e R l. If for some k, with 2 ¢ k ¢ n-1, vectors

. n,
yl e R l, i=1,...,k-1, have already been found with the property that

1

i+1 .
1 ,...,Xn) =2Z 4, 1= l’--.,k—l,

i, 1 i
(6.5) PiG(y,x) = Fl(y seeet¥ 1 X

k-1 k+1 .
then the surjectivity of Fk(yl,..., r*rX ,--.,xn) ensures the existence

of a yk € Rnk for which (6.5) holds with i = k. Hence, G{y,x) = z has a
unique solution y € R" and the proof is complete.

Theorems 6.4 and 6.5 together state the global convergence 6f the
block Gauss-Seidel process (6.3) for continuous, surjective M-functions.
As ménfioned above, this result also carries over to the block-Jacobi process

and the underrelaxed versions of both these block methods, and the proofs for
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these cases are essentially the same as that for the Gauss-Seidel method.
These results raise the question whether some of the other global

convergence theorems mentioned in the beginning of this section might also

be subsumed under Theorem 6.4. This is not the case due to the fairly

restrictive nature of the regular iteration functions. There appear to

be many possible modifications of Definition 6.1, but it iz doubtful whether

any one of them actually covers a broader class of methods and not just again

only a few specific convergence theorems. We end this section with some

results about one such generalized form of the regular iteration functions.

Since this discussion is primarily intended to be an example, no attempt

was made to phrase these results in their most general form.

n n . . n n n .
Theorem 6.6. Let F:R > R be inverse isotone and G:R x R -» R a continuous

mapping with the properties

(6.6a) G(x,x) = Fx for any x ¢ r®
(6.6b) G(+,x):R" > R" is inverse isotone and surjective for any x ¢ r"
(6.6c)  G(x,x) 3 Gly,x), %,y € R implies that Gly,y) > Gly,x).

If for some xo,yo, z ¢ R® we have Fxo £z g Fyo, then the sequence {yk}
given by (6.1) and starting from yo satisfies yk v x*, k +» =, where

x* EZ<X0,YQ>' is the (unique) solution of Fx = z in R".

Proof: By (6.6b) the mapping H:R" + R® satisfying G (Hx,x) = 2z is well~-

defined and certainly continuous. Then {yk} is uniquely specified by

yk+l = Hyk, k=0,1,... . Moreover, from (6.6¢c) it follows that when
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G(x,x) = Fx 2 z = G(Hx,x), then also FHx = G(Hx,Hx) > G(HX,x) = z. Thus

k

we obtain from FyO > z, by induction, that Fy = > Fxo, k=20,1,... .

z
. . . . . k 0
Now the inverse isotonicity of F implies that ¥y = x , for all k 3 O,

which, in turn, ensures the existence of lim yk x¥* ¢ <go,yo>. By the

o0
continuity of G we then have Fx* = G(x*%x*) = z and, clearly, x* is
unique.

Note that the analogous result holds for the lower sequence {xk}
starting from x0 provided that all inequalities in (6.6c) are reversed.
Any regular iteration function satisfies (6.6c¢) as well as the corresponding
reversed implication. In fact, if G(x,x) 2 G(y,x), X,y ¢ Rn, then we obtain
from (6.2b) that x > y and hénce from (6.2c) that G(y,y) = G(y,x). The
analogous argument applies when the inequalities are reversed.

As an application of this result we give the following theorem, proved

in more generality by Ortega and Rheinboldt [1967].

Theorem 6.7. Let F:Rn > rR® be continuously differentiable, convex, and
inverse isotone, and assume that F'(x) = B(x) - C(x) is, for any x ¢ Rn,
a regular splitting of F'(x) with continuous B:R -+ L(Rn). If for given

‘xo,yo, z ¢ R® we have Fxo < 2z € FyO {and thus xo < yo), then the sequence

k+1 k k. -1 k
(6.7) Yy =y =-Bly) (Fy -2), k= 0,1,...

satisfies yk ¥ x%*, kK » », where x* ¢ <x0,y0> is the (unique) solution of

Fx = 2 in Rn.
In order to use Theorem 6.6, we note first that for

G:R" x R" > R, G(y,x) = B(x) (y-x) + Fx
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the process (6.7) is equivalent with (6.1). Clearly G satisfies (6.6a)
and (6.6b); for the proof of (6.6c) let G(x,x) > G(y,x) = w for some
X,V € R®. This inequality is equivalent with 0 3 B(x) (y-x), and hence,

B(x)_l > 0 implies that x > y. With the help of the convexity inequality
(6.8) Fy - Fx » F'(x) (y-x), X,y ¢ R,

we find then that indeed

\"4

G(y,y) = Fy > Fx + F'(x) (y—x)

Fx - (B(x)-C(x))B(x) T (Fx-w)

C)BE) L Fx-w) + w 2w = Gly,x).

Note that G 1is, in general, not a regular iteration fungtion.

Ortega and Rheingoldt [1967] have shown that this result contains as
a corollary the global convergence theorem for Newton's method of Baluev
{1952] mentioned in the beginning of this section. It may be interesting
that Theorem 3.7 allows us fo state this theorem in a slightly modified, and

vet equivalent, form:

Theorem 6.8. Let F:Rn > Rn be continuously differentiable, convex, and

R R . 0 n
inverse isotone. If Fx = 2z has a solution x*, then, for any x ¢ R, the

4 -
Newton iterates xk 1. xk —VF'(xk) l(ka—z), k

and satisfy xk > xk+l, k=1,2,..., and lim xk

k>0

0,1,..., are well-defined

x*,

By Theorem 3.7, F'{(x) is always nonsingular and F'(x)*l > 0. Thus

the mapping ¢:rR" x R® > rR%, G(y,x) = F'(x}(y-x) + Fx clearly satisfies (6.6a)
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and (6.6b), while (6.6c) is simply (6.8). From (6.8) also follows that

Fxl 2 Fxo + F'(xo)(xl—xo) = 2z, and hence, that Theorem 6.6 applies on the

order interval <g*,xl>.
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